Master Stability Function

Medicine and Biology

Steve

The University of Nottingham

Beyond weak coupling

$$
\begin{aligned}
& \dot{x}_{i}=f\left(x_{i}\right)+\epsilon \sum_{j=1}^{N} w_{i j} G\left(x_{j}\right) \\
& \left.\dot{\theta}_{i}=\omega+\epsilon \sum_{j=1}^{N} w_{i j} H\left(\theta_{j}-\theta_{i}\right)\right\rangle
\end{aligned}
$$

... strong coupling, event driven interactions, ...

Challenge of studying networks of non smooth and discontinuous threshold elements.

$$
\dot{z}=\mathrm{F}(z)
$$

$$
\mathrm{F}(z)= \begin{cases}\mathrm{F}_{\mathrm{L}} \equiv A_{\mathrm{L}} z+\mathrm{c}_{\mathrm{L}} & v<\mathrm{a} \\ \mathrm{~F}_{\mathrm{R}} \equiv A_{\mathrm{R}} z+\mathrm{c}_{\mathrm{R}} & v>\mathrm{a}\end{cases}
$$

[for all models]

Matrix exponential solutions

$$
z\left(A, c ; t, t_{0}\right)=G\left(A ; t-t_{0}\right) z\left(t_{0}\right)+K\left(A ; t-t_{0}\right) c,
$$

$\mathrm{G}(A ; \mathrm{t})=\mathrm{e}^{A \mathrm{t}}, \quad \mathrm{K}(A ; \mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{G}(A ; s) \mathrm{d} s=A^{-1}\left[\mathrm{G}(A ; \mathrm{t})-\mathrm{I}_{2}\right]$

$$
\begin{aligned}
& a=v\left(\Delta_{R}\right) \\
& \mathrm{a}=v(\Delta) \\
& w(\Delta)=w(0) \\
& \text { Glueing! }
\end{aligned}
$$

Floquet exponent

Need to be careful when propagating perturbations through switching manifold

$$
\begin{gathered}
\sigma_{\text {smooth }}=\frac{1}{\Delta} \int_{0}^{\Delta} \operatorname{Tr} \operatorname{DF}(\bar{z}(\mathrm{~s})) \mathrm{ds} \\
\sigma=\frac{1}{\Delta} \sum_{\mu \in \mathrm{L}, \mathrm{R}}\left[\Delta_{\mu} \operatorname{Tr} A_{\mu}+\log \frac{\dot{\nu}\left(\mathrm{T}_{\mu}^{+}\right)}{\dot{\nu}\left(\mathrm{T}_{\mu}^{-}\right)}\right]
\end{gathered}
$$

Network synchrony: MSF

L M Pecora and T L Carroll. Master stability functions for synchronized coupled systems. Physical Review Letters, 80:2109-2112, 1998.

$$
\begin{aligned}
\dot{\mathbf{x}}_{i} & =\mathbf{F}\left(\mathbf{x}_{i}\right)+\sigma \sum_{\mathfrak{j}=1}^{N} w_{i j}\left[\mathbf{H}\left(\mathbf{x}_{\mathfrak{j}}\right)-\mathbf{H}\left(\mathbf{x}_{i}\right)\right] & & \mathbf{x}_{i}, \mathbf{F}, \mathbf{H} \in \mathbb{R}^{m} \\
& \equiv \mathbf{F}\left(\mathbf{x}_{i}\right)-\sigma \sum_{\mathfrak{j}=1}^{N} \mathcal{G}_{i j} \mathbf{H}\left(\mathbf{x}_{\mathfrak{j}}\right) & &
\end{aligned}
$$

Graph Laplacian

$$
\mathcal{G}_{i j}=-w_{i j}+\delta_{i j} \sum_{k} w_{i k}
$$

Synchronisation manifold

$$
\mathrm{x}_{1}(\mathrm{t})=\mathrm{x}_{2}(\mathrm{t})=\ldots=\mathrm{x}_{\mathrm{N}}(\mathrm{t})=\mathrm{s}(\mathrm{t}) \quad \dot{\mathrm{s}}=\mathbf{F}(\mathrm{s})
$$

Variational problem $\mathrm{x}_{\mathrm{i}}(\mathrm{t})=\mathrm{s}(\mathrm{t})+\delta \mathrm{x}_{\mathrm{i}}(\mathrm{t})$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \delta \mathbf{x}_{i}=\mathrm{DF}(\mathrm{~s}) \delta \mathbf{x}_{i}-\sigma \mathrm{DH}(\mathrm{~s}) \sum_{j=1}^{\mathrm{N}} \mathcal{G}_{i j} \delta \mathbf{x}_{j}
$$

Nice notation $\mathbf{U}=\left(\delta \mathbf{x}_{1}, \ldots, \delta \mathbf{x}_{\mathrm{N}}\right) \in \mathbb{R}^{\mathbf{N} \times \mathrm{m}}$

$$
\dot{\mathbf{U}}=\left(\mathrm{I}_{\mathrm{N}} \otimes \mathrm{DF}(\mathbf{s})\right) \mathbf{U}-\sigma(\mathcal{G} \otimes \mathrm{DH}(\mathbf{s})) \mathbf{U}
$$

Block diagonalise using

$$
\begin{gathered}
\mathcal{G P}=\mathrm{P} \Lambda \\
\mathbf{V}=\left(\mathrm{P} \otimes \mathrm{I}_{\mathbf{m}}\right)^{-1} \mathbf{U} \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{N}}\right) \\
\dot{\mathbf{V}}=\left(\mathrm{I}_{\mathbf{N}} \otimes \mathrm{DF}(\mathrm{~s})\right) \mathbf{V}-\sigma(\Lambda \otimes \mathrm{DH}(\mathrm{~s})) \mathbf{V}
\end{gathered}
$$

$$
A \otimes B=\left[\begin{array}{ccc}
A_{11} B & \ldots & A_{1 n_{2}} B \\
\vdots & \ddots & \vdots \\
A_{n_{1} 1} B & \ldots & A_{n_{1} n_{2}} B
\end{array}\right]
$$

$$
(A \otimes B)(C \otimes D)=(A C) \otimes(B D)
$$

$$
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}
$$

N -block structure with the dynamics in each block, indexed by $l=1, \ldots, N$:

$$
\dot{\xi}_{l}=\left[D \mathbf{F}(\mathbf{s})-\beta_{l} D \mathbf{H}(\mathbf{s})\right] \xi_{l} \quad \xi_{l} \in \mathbb{C}^{m} \quad \beta_{l}=\sigma \lambda_{l} \in \mathbb{C}
$$

The MSF is defined as the function which maps the complex number β to the greatest Floquet exponent of the variational equation. The synchronous state of the system of coupled oscillators is stable if the MSF is negative at $\beta=\sigma \lambda_{l}$ where λ_{l} ranges over the eigenvalues of the matrix \mathcal{G} (excluding $\lambda_{1}=0$).

Saltation also acts blockwise

What does it all look like? Planar example:

$$
\beta_{l}=\sigma \lambda_{l} \in \mathbb{C}
$$

$$
\dot{\xi}=\left[\mathrm{DF}(\mathbf{s})-\beta_{l} \mathrm{DH}(\mathbf{s})\right] \xi, \quad \xi \in \mathbb{R}^{2}
$$

eigenvalues of \mathcal{G}
... modified Floquet problem.
Non smooth result: $\quad \xi(\Delta)=\Gamma(l) \xi(0)$

$$
\Gamma(l)=K_{L} G_{L}(l) K_{R} G_{R}(l) \in \mathbb{R}^{2 \times 2}, \quad l=1, \ldots, N
$$

$$
\begin{aligned}
& \mathrm{G}_{\mu}(\mathrm{l})=\mathrm{G}\left(\mathrm{~A}_{\mu}-\beta_{\mathrm{l}} J ; \Delta_{\mu}\right), \quad \mathrm{K}_{\mu}=\mathrm{K}\left(\mathrm{~T}_{\mu}\right), \quad \mu \in\{\mathrm{L}, \mathrm{R}\} \\
& \mathrm{K}(\mathrm{t})=\left[\begin{array}{cc}
\dot{v}\left(\mathrm{t}^{+}\right) / \dot{v}\left(\mathrm{t}^{-}\right) & 0 \\
\left(\dot{\mathrm{w}}\left(\mathrm{t}^{+}\right)-\dot{\mathrm{w}}\left(\mathrm{t}^{-}\right)\right) / \dot{v}\left(\mathrm{t}^{-}\right) & 1
\end{array}\right], \quad \mathrm{J}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Saltation matrix

Network of homoclinic oscillators

Global linear coupling on " v "

Synchrony unstable for weak coupling and restabilises via an inverse period doubling bifurcation at $\epsilon=\epsilon_{\mathrm{pd}}$ in excellent agreement with simulations (independent of N).

Star Network

$$
w=\left[\begin{array}{ccccc}
0 & 1 /(N-1) & 1 /(N-1) & \cdots & 1 /(N-1) \\
1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & & & \vdots \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Synchrony is always unstable
 dynamical systems, European Journal of Applied Mathematics, Vol 27(6), 904-9
... and now for event driven synaptic coupling

PWL IF

$$
\begin{aligned}
\dot{v} & =|v|+\mathrm{I}-w & v^{+} & =v_{\mathrm{r}} \\
\tau \dot{w} & =-w & w^{+} & =w^{-}+\kappa / \tau
\end{aligned}
$$

S Coombes, R Thul and K C A Wedgwood 2012 Nonsmooth dynamics in spiking neuron models, Physica D, Vol 241, 2042-2057
events \rightarrow states

Synaptically coupled network

$$
\dot{\mathbf{z}}_{i}=\mathbf{F}\left(\mathbf{z}_{i}\right)+\sigma \sum_{j=1}^{N} W_{i j} \mathbf{H}\left(\mathbf{z}_{j}\right)
$$

$$
\mathbf{z}_{i}=\left(v_{i}, w_{i}, s_{i}, u_{i}\right)
$$

$$
\mathbf{H}(\mathbf{z})=(\mathrm{s}, 0,0,0)
$$

$$
\begin{array}{ll}
\left(1+\frac{1}{\alpha} \frac{d}{d t}\right) s_{i}=u_{i} & s_{i}(t)=\sum_{m \in \mathbb{Z}} \eta\left(t-T_{i}^{m}\right) \\
\left(1+\frac{1}{\alpha} \frac{d}{d t}\right) u_{i}=\sum_{m \in \mathbb{Z}} \delta\left(t-T_{j}^{m}\right) . &
\end{array}
$$

$$
A_{R}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & -1 / \tau & 0 & 0 \\
0 & 0 & -\alpha & \alpha \\
0 & 0 & 0 & -\alpha
\end{array}\right] \quad \begin{gathered}
\mathbf{z}_{i} \rightarrow \mathbf{g}\left(\mathbf{z}_{i}\right)=\left(v_{r}, w_{i}+\kappa / \tau, s_{i}, u_{i}+\alpha\right) \\
h\left(\mathbf{z}_{i} ; v_{\text {th }}\right)=v_{i}-v_{\text {th }}=0
\end{gathered}
$$

A pwl system with saltation matrices that describe firing

$$
\begin{aligned}
\mathrm{K}(\mathrm{~T}) & =\operatorname{Dg}\left(\mathbf{z}\left(\mathrm{T}^{-}\right)\right) \\
& +\frac{\left[\dot{\mathbf{z}}\left(\mathrm{T}^{+}\right)-\mathrm{Dg}\left(\mathbf{z}\left(\mathrm{~T}^{-}\right)\right) \dot{\mathbf{z}}\left(\mathrm{T}^{-}\right)\right]\left[\nabla_{\mathbf{z}} h\left(\mathbf{z}\left(\mathrm{~T}^{-}\right)\right)\right]^{\top}}{\nabla_{\mathbf{z}} h\left(\mathbf{z}\left(\mathrm{~T}^{-}\right)\right) \cdot \dot{\mathbf{z}}\left(\mathrm{T}^{-}\right)} \\
& =\left[\begin{array}{cccc}
\dot{\boldsymbol{v}}\left(\mathrm{T}^{+}\right) / \dot{\mathcal{v}}\left(\mathrm{T}^{-}\right) & 0 & 0 & 0 \\
\left(\dot{w}\left(\mathrm{~T}^{+}\right)-\dot{w}\left(\mathrm{~T}^{-}\right)\right) / \dot{\mathcal{v}}\left(\mathrm{T}^{-}\right) & 1 & 0 & 0 \\
\left.\left(\dot{s}\left(\mathrm{~T}^{+}\right)-\dot{\mathbf{s}}\left(\mathrm{T}^{-}\right)\right) / \mathrm{T}^{-}\right) \\
\left(\dot{\mathfrak{u}}\left(\mathrm{T}^{+}\right)-\dot{\mathfrak{u}}\left(\mathrm{T}^{-}\right)\right) / \dot{\nu}\left(\mathrm{T}^{-}\right) & 0 & 0 & 0 \\
\hline
\end{array}\right]
\end{aligned}
$$

Balance ensures synchrony $\sum_{j=1}^{N} W_{i j}=0$
R Nicks, L Chambon and S Coombes 2018 Clusters in nonsmooth oscillator networks, Physical Review E, Vol 97, 032213

MSF: $\Gamma_{l}=K(\Delta) \exp \left\{\left(A_{R}+\sigma \lambda_{l} D H\right) \Delta\right\}$

Wilson-Cowan network(s)

$$
\begin{aligned}
\dot{u} & =-\mathfrak{u}+\mathrm{f}\left(\mathrm{I}_{\mathfrak{u}}+w^{\mathfrak{u} u} u-w^{v u} v\right), \\
\tau \dot{v} & =-v+\mathrm{f}\left(\mathrm{I}_{v}+w^{\mathfrak{u} v} u-w^{v v} v\right)
\end{aligned}
$$

Firing rate:

$$
f(z)=\frac{1}{1+e^{-\beta z}}
$$

PW-Linear and PW-constant choices
 (non-smooth interactions)

$$
\sum_{j=1}^{N} \mathcal{W}_{i j}^{\alpha \beta}=\mathcal{w}^{\alpha \beta}
$$

$$
\begin{aligned}
\frac{d u_{i}}{d t} & =-u_{i}+H\left(I_{u}+\sum_{j=1}^{N} \mathcal{W}_{i j}^{u u} u_{j}-\sum_{j=1}^{N} \mathcal{W}_{i j}^{v u} v_{j}\right), \\
\tau \frac{d v_{i}}{d t} & =-v_{i}+H\left(I_{v}+\sum_{j=1}^{N} \mathcal{W}_{i j}^{u v} u_{j}-\sum_{j=1}^{N} \mathcal{W}_{i j}^{v v} v_{j}\right)
\end{aligned}
$$

New variables (U,V); switching manifolds $\mathrm{U}=0$ and $\mathrm{V}=0$

MSF easily constructed
Mex-hat ring network

$$
(N=31)
$$

5,760 symmetries
3 clusters

$$
\dot{\mathbf{z}}_{i}=\mathbf{F}\left(\mathbf{z}_{\mathrm{i}}\right)+\sigma \sum_{j} A_{i j} \mathbf{H}\left(\mathbf{z}_{\mathrm{j}}\right)
$$

Irreducible representations of the graph automorphism

GAP - Groups, Algorithms, Programming:
a System for Computational
Discrete Algebra http://www.gap-system.org

Nice variational formulation for M clusters

$$
\dot{\mathbf{y}}=\left[\sum_{\mathfrak{m}=1}^{\mathrm{M}} \mathrm{E}^{(\mathfrak{m})} \otimes \mathrm{DF}\left(\mathbf{s}_{\mathfrak{m}}\right)+\sigma B \otimes \mathrm{I}_{\mathrm{n}} \sum_{\mathfrak{m}=1}^{M} J^{(\mathfrak{m})} \otimes \mathrm{DH}\left(\mathbf{s}_{\mathfrak{m}}\right)\right] \mathbf{y}
$$

L M Pecora, et al. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nature Communications, 5(4079), 2014.

Papers

S Coombes and R Thu 2016 Synchrony in networks of coupled nonsmooth dynamical systems: Extending the master stability function

European Journal of Applied Mathematics, Vol 27(6), 904-922

S Coombes, Y-M Lai, M Sayli and R Thu 2018 Networks of piecewise linear neural mass models, \ P

European Journal of Applied Mathematics, Vol 29, 869-890

Q

